Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Rev Recent Clin Trials ; 18(2): 123-128, 2023.
Article in English | MEDLINE | ID: covidwho-20243996

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPS) play a key role in the pathogenesis of osteoarthritis (OA). Recent research showed the involvement of some MMPs in COVID-19, but the results are limited and contradictory. OBJECTIVE: In this study, we investigated the levels of MMPs (MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10) and TIMP-1 in the plasma of patients with OA after recovery from COVID- 19. METHODS: The experiment involved patients aged 39 to 80 diagnosed with knee OA. All study participants were divided into three research groups: the control group included healthy individuals, the group OA included patients with enrolled cases of OA, and the third group of OA and COVID-19 included patients with OA who recovered from COVID-19 6-9 months ago. The levels of MMPs and TIMP-1 were measured in plasma by enzyme-linked immunosorbent assay. RESULTS: The study showed a change in the levels of MMPs in patients with OA who had COVID- 19 and those who did not have a history of SARS-CoV-2 infection. Particularly, patients with OA who were infected with coronavirus established an increase in MMP-2, MMP-3, MMP-8, and MMP-9, compared to healthy controls. Compared to normal subjects, a significant decrease in MMP-10 and TIMP-1 was established in both groups of patients with OA and convalescent COVID-19. CONCLUSION: Thus, the results suggest that COVID-19 can affect the proteolysis-antiproteolysis system even after a long postinfectious state and may cause complications of existing musculoskeletal pathologies.


Subject(s)
COVID-19 , Osteoarthritis , Humans , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 3 , Tissue Inhibitor of Metalloproteinases , Matrix Metalloproteinase 10 , Matrix Metalloproteinase 8 , SARS-CoV-2 , Osteoarthritis/etiology
2.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Article in English | MEDLINE | ID: covidwho-2308487

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Subject(s)
COVID-19 , Sepsis , Humans , Mice , Animals , Oseltamivir/adverse effects , Zanamivir/adverse effects , Neuraminidase/metabolism , Neuraminidase/pharmacology , Neutrophils , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species , Lipopolysaccharides/pharmacology , Sepsis/chemically induced
3.
Iran J Allergy Asthma Immunol ; 22(1): 91-98, 2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2260532

ABSTRACT

Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2  (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.


Subject(s)
COVID-19 , Lymphopenia , Humans , Adult , Middle Aged , COVID-19/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Leukocytes, Mononuclear , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Lymphopenia/genetics , Serine Endopeptidases/genetics
4.
Virus Res ; 329: 199091, 2023 05.
Article in English | MEDLINE | ID: covidwho-2278899

ABSTRACT

AIM: This study investigated the prophylactic and therapeutic role of ultradiluted preparation of the Delta variant of SARS-CoV-2 recombinant spike (S) protein during S antigen-induced inflammatory process of disease progression along with the probable mechanism of action. MAIN METHODS: Ultradiluted S protein (UDSP) was prepared and administered orally to adult BALB/c mice before and after administration of S antigen intranasally. After an observation period of 72 h, animals were sacrificed and expression level of ferritin was assayed through ELISA. The genetic expressions of cytokines, IL-6, IL-10, IL-1ß, TNFα, IL-17, MMP-9, TIMP-1, ferritin light and heavy chains, and mitochondrial ferritin from lung tissues were investigated through RT-PCR. Formalin-fixed lung tissue sections were stained with hematoxylin and eosin to observe the degree of pathological changes. The activity of MMP-9 in lung tissues was investigated through gelatin zymography and immunofluorescence of MMP-9 in lung tissue sections was performed to revalidate the finding from gelatin zymography. Systems biology approach was used to elucidate a probable pathway where UDSP attenuated the inflammation through the regulation of pro- and anti-inflammatory cytokines. KEY FINDINGS: UDSP attenuated the S antigen-induced hyperinflammation in the lung by regulating pro- and anti-inflammatory cytokines, calming cytokine storm, reducing ferritin level both in transcriptional and translational levels, and restoring critical ratio of MMP-9: TIMP-1. SIGNIFICANCE: Our findings suggest a probable pathway by which UDSP might have attenuated inflammation through the regulation of cytokines, receptors, and other molecules. This proclaims UDSP as a promising antiviral agent in the treatment of COVID-19-induced immunopathogenesis.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Mice , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Ferritins/genetics , Mice, Inbred BALB C , Gelatin/metabolism , SARS-CoV-2/metabolism , Lung/metabolism , Cytokines/metabolism , Inflammation
5.
Anticancer Res ; 42(11): 5415-5430, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2267710

ABSTRACT

BACKGROUND/AIM: The oral bacteria involved in the development of periodontitis alter the tissue conditions and modify immune responses in a way that may also influence tumor development. We investigated the prevalence of R gingipain (Rgp), a key virulence factor of the oral pathobiont Porphyromonas gingivalis, and the tissue-destructive enzymes matrix metalloproteinase 8 (MMP-8) and 9 (MMP-9) in 202 unselected consecutive oropharyngeal squamous cell carcinoma (OPSCC) samples. We further investigated the relationships between these factors and human papillomavirus (HPV) status, Treponema denticola chymotrypsin-like proteinase (Td-CTLP) immunoexpression, clinical parameters, and patient outcome. PATIENTS AND METHODS: Clinicopathological data were derived from university hospital records. Rgp, MMP-8, and MMP-9 immunoexpression was evaluated by immunohistochemistry; the immunohistochemistry of Td-CTLP and HPV has been described earlier for this patient series. Cox regression analysis including death by causes other than OPSCC as a competing risk served to assess sub distribution hazard ratios. RESULTS: In multivariable survival analysis, positive tumoral MMP-9 immunoexpression predicted poor prognosis among all patients [sub distribution hazard ratio (SHR)=2.4; confidence interval (CI)=1.2-4.4, p=0.008], and especially among those with HPV-negative OPSCC (SHR=3.5; CI=1.7-7.3, p=0.001). Positive immunoexpression of Rgp in inflammatory cells was associated with favorable outcome among all patients (SHR=0.5, CI=0.2-0.9, p=0.021) and among those with HPV-negative disease (SHR=0.4, CI=0.2-0.9, p=0.022). CONCLUSION: Our results suggest that tumoral MMP-9 may be related to poor outcome in OPSCC, especially in HPV-negative disease, while Rgp immunoexpression in inflammatory cells is associated here with better disease-specific survival (DSS).


Subject(s)
Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/complications , Matrix Metalloproteinase 8 , Oropharyngeal Neoplasms/pathology , Prognosis , Matrix Metalloproteinase 9 , Gingipain Cysteine Endopeptidases , Porphyromonas gingivalis , Chymotrypsin , Papillomaviridae , Head and Neck Neoplasms/complications , Virulence Factors
6.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2245895

ABSTRACT

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Subject(s)
COVID-19 , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Matrix Metalloproteinase 9/metabolism , Mice, Inbred mdx , Tumor Necrosis Factor-alpha/metabolism , Post-Acute COVID-19 Syndrome , Neopterin/metabolism , COVID-19/pathology , SARS-CoV-2 , Muscular Dystrophy, Duchenne/genetics , Fibrosis , Muscle, Skeletal/metabolism , Disease Models, Animal
7.
Cells ; 12(4)2023 02 17.
Article in English | MEDLINE | ID: covidwho-2244192

ABSTRACT

BACKGROUND AND METHODS: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.


Subject(s)
Brain-Derived Neurotrophic Factor , COVID-19 , Male , Humans , Aged , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Intermediate Filaments , Pilot Projects , Morbidity
8.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2216342

ABSTRACT

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.


Subject(s)
COVID-19 , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Signal Transduction , Intercellular Signaling Peptides and Proteins , Mitochondria/metabolism
9.
Front Immunol ; 13: 1070379, 2022.
Article in English | MEDLINE | ID: covidwho-2198911

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with disorders affecting the peripheral and the central nervous system. A high number of patients develop post-COVID-19 syndrome with the persistence of a large spectrum of symptoms, including neurological, beyond 4 weeks after infection. Several potential mechanisms in the acute phase have been hypothesized, including damage of the blood-brain-barrier (BBB). We tested weather markers of BBB damage in association with markers of brain injury and systemic inflammation may help in identifying a blood signature for disease severity and neurological complications. Methods: Blood biomarkers of BBB disruption (MMP-9, GFAP), neuronal damage (NFL) and systemic inflammation (PPIA, IL-10, TNFα) were measured in two COVID-19 patient cohorts with high disease severity (ICUCovid; n=79) and with neurological complications (NeuroCovid; n=78), and in two control groups free from COVID-19 history, healthy subjects (n=20) and patients with amyotrophic lateral sclerosis (ALS; n=51). Samples from COVID-19 patients were collected during the first and the second wave of COVID-19 pandemic in Lombardy, Italy. Evaluations were done at acute and chronic phases of the COVID-19 infection. Results: Blood biomarkers of BBB disruption and neuronal damage are high in COVID-19 patients with levels similar to or higher than ALS. NeuroCovid patients display lower levels of the cytokine storm inducer PPIA but higher levels of MMP-9 than ICUCovid patients. There was evidence of different temporal dynamics in ICUCovid compared to NeuroCovid patients with PPIA and IL-10 showing the highest levels in ICUCovid patients at acute phase. On the contrary, MMP-9 was higher at acute phase in NeuroCovid patients, with a severity dependency in the long-term. We also found a clear severity dependency of NFL and GFAP levels, with deceased patients showing the highest levels. Discussion: The overall picture points to an increased risk for neurological complications in association with high levels of biomarkers of BBB disruption. Our observations may provide hints for therapeutic approaches mitigating BBB disruption to reduce the neurological damage in the acute phase and potential dysfunction in the long-term.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , Blood-Brain Barrier , Interleukin-10 , Matrix Metalloproteinase 9 , SARS-CoV-2 , Pandemics , Post-Acute COVID-19 Syndrome , Nervous System Diseases/diagnosis , Inflammation , Biomarkers
10.
Front Immunol ; 13: 931388, 2022.
Article in English | MEDLINE | ID: covidwho-2141951

ABSTRACT

Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Murine hepatitis virus , White Matter , Animals , Central Nervous System , Chemokine CXCL1/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Multiple Sclerosis/metabolism , Neutrophils/metabolism , RNA, Messenger , Tetracyclines , White Matter/metabolism
11.
Int J Med Sci ; 19(13): 1903-1911, 2022.
Article in English | MEDLINE | ID: covidwho-2100319

ABSTRACT

COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.


Subject(s)
COVID-19 , Matrix Metalloproteinase 9 , Humans , Matrix Metalloproteinase 9/metabolism , Brain-Derived Neurotrophic Factor , Vascular Endothelial Growth Factor A , Matrix Metalloproteinase 8 , Biomarkers
12.
J Pak Med Assoc ; 72(9): 1827-1830, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2067710

ABSTRACT

Oral fungal infections can be caused by certain species of fungi among which candida albicans is the most implicated. Oral candidiasis is correlated with multiple conditions, such as coronavirus disease-2019, oral leukoplakia and oral erythroplakia. Tenascin is a glycoprotein and is present at the site of tissue injury and chronic inflammation, and tends to be over-expressed in cases of malignancy. Matrix metalloproteinase-9 belongs to a family of zinc-dependent endopeptidases and is involved in the degradation of extracellular matrix, leading to tissue invasion and metastasis. The current narrative review was planned to shed light on the fungal co-infections of coronavirus disease-2019 and molecular mechanisms of matrix metalloproteinase-9 and tenascin involved in the pathogenesis of fungus-associated oral leukoplakia and oral erythroplakia.


Subject(s)
COVID-19 , Precancerous Conditions , Humans , Candida , SARS-CoV-2 , Matrix Metalloproteinase 9 , Tenascin , Leukoplakia, Oral , Biomarkers , Zinc
13.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4765-4777, 2022 Sep.
Article in Chinese | MEDLINE | ID: covidwho-2030500

ABSTRACT

Epidemic diseases have caused huge harm to the society. Traditional Chinese medicine(TCM) has made great contributions to the prevention and treatment of them. It is of great reference value for fighting diseases and developing drugs to explore the medication law and mechanism of TCM under TCM theory. In this study, the relationship between the TCM theory of cold pestilence and modern epidemic diseases was investigated. Particularly, the the relationship of coronavirus disease 2019(COVID-19), severe acute respiratory syndrome(SARS), and influenza A(H1 N1) with the cold pestilence was identified and analyzed. The roles of TCM theory of cold pestilence in preventing and treating modern epidemic diseases were discussed. Then, through data mining and textual research, prescriptions for the treatment of cold pestilence were collected from major databases and relevant ancient books, and their medication laws were examined through analysis of high-frequency medicinals and medicinal pairs, association rules analysis, and cluster analysis. For example, the prescriptions with high confidence levels were identified: "Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Paeoniae Radix Alba" "Glycyrrhizae Radix et Rhizoma-Pinelliae Rhizoma-Bupleuri Radix", and TCM treatment methods with them were analyzed by clustering analysis to yield the medicinal combinations: "Zingiberis Rhizoma-Aconiti Lateralis Radix Praeparata-Ginseng Radix et Rhizoma" "Poria-Atractylodis Macrocephalae Rhizoma" "Cinnamomi Ramulus-Asari Radix et Rhizoma" "Citri Reticulatae Pericarpium-Perillae Folium" "Pinelliae Rhizoma-Magnoliae Officinalis Cortex-Atractylodis Rhizoma" "Paeoniae Radix Alba-Angelicae Sinensis Radix-Glycyrrhizae Radix et Rhizoma-Bupleuri Radix-Scutellariae Radix-Rhizoma Zingiberis Recens" "Ephedrae Herba-Armeniacae Semen Amarum-Gypsum Fibrosum" "Chuanxiong Rhizoma-Notopterygii Rhizoma et Radix-Angelicae Dahuricae Radix-Platycodonis Radix-Saposhnikoviae Radix". Then, according to the medication law for cold pestilence, the antiviral active components of medium-frequency and high-frequency medicinals were retrieved. It was found that these components exerted the antiviral effect by inhibiting virus replication, regulating virus proteins and antiviral signals, and suppressing protease activity. Based on network pharmacology, the mechanisms of the medicinals against severe acute respiratory syndrome coronavirus(SARS-CoV), 2019 novel coronavirus(2019-nCoV), and H1 N1 virus were explored. It was determined that the key targets were tumor necrosis factor(TNF), endothelial growth factor A(VEGFA), serum creatinine(SRC), epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), mitogen-activated protein kinase 14(MAPK14), and prostaglandin-endoperoxide synthase 2(PTGS2), which were involved the mitogen-activated protein kinase(MAPK) pathway, advanced glycation end-products(AGE)-receptor for AGE(RAGE) pathway, COVID-19 pathway, and mTOR pathway. This paper elucidated the medication law and mechanism of TCM for the prevention and treatment of epidemic diseases under the guidance of TCM theory of cold pestilence, in order to build a bridge between the theory and modern epidemic diseases and provide reference TCM methods for the prevention and treatment of modern epidemic diseases and ideas for the application of data mining to TCM treatment of modern diseases.


Subject(s)
Aconitum , Communicable Disease Control , Communicable Diseases , Drugs, Chinese Herbal , Epidemics , Medicine, Chinese Traditional , Pinellia , Antiviral Agents , COVID-19/epidemiology , Calcium Sulfate , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Communicable Diseases/virology , Creatinine , Cyclooxygenase 2 , Drugs, Chinese Herbal/therapeutic use , Endothelial Growth Factors , Epidemics/prevention & control , ErbB Receptors , Humans , Matrix Metalloproteinase 9 , Mitogen-Activated Protein Kinase 14 , SARS-CoV-2 , TOR Serine-Threonine Kinases , Tumor Necrosis Factors , COVID-19 Drug Treatment
14.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2009235

ABSTRACT

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Subject(s)
Electronic Nicotine Delivery Systems , Transcriptome , Vaping , Animals , Cricetinae , Male , Angiotensin-Converting Enzyme 2 , Angiotensins , Cotinine , Fibrosis , Inflammation/pathology , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mesocricetus , Nicotine/pharmacology , Renin , Superoxide Dismutase , Thromboplastin , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha , Vaping/adverse effects , Vascular Endothelial Growth Factor A
15.
Arch Immunol Ther Exp (Warsz) ; 70(1): 18, 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1971645

ABSTRACT

To evaluate soluble CD147 levels in COVID-19 and identify whether these are associated with hyperinflammation and disease severity. One-hundred and nine COVID-19 patients and 72 healthy blood donors were studied. Levels of CD147, matrix metalloproteases (MMP) and inflammatory markers were measured on hospital arrival, while the need for mechanical ventilation and the occurrence of death during hospitalization were recorded. CD147 levels were higher in COVID-19 (1.6, 1.0-2.3 vs 1.3, 1.0-1.6 ng/ml; P = 0.003) than controls. MMP-2 (9.2, 4.5-12.9 vs 4.2, 3.7-4.6 ng/ml; P < 0.001), MMP-3 (1.1, 0.9-1.3 vs 0.9, 0.7-1.0 ng/ml; P < 0.001) and MMP-9 (0.9, 0.5-1.2 vs 0.4, 0.2-0.6 ng/ml; P < 0.001) were also higher in COVID-19, while MMP-1 (0.6, 0-1.4 vs 0.6, 0.3-0.7 ng/ml; P = 0.711) was not different. Significant correlations were found between CD147 and MMP-2 (ρ = 0.34), MMP-3 (ρ = 0.21), interleukin 6 (ρ = 0.21), and the neutrophil/lymphocyte ratio (ρ = 0.26). Furthermore, CD147 levels were higher in patients who required mechanical ventilation (1.8, 1.4-2.4 vs 1.2, 0.8-1.9 ng/ml; P < 0.001) and in those who ultimately died (1.9, 1.4-2.7 vs 1.4, 0.9-1.9 ng/ml; P = 0.009). CD147 is elevated in COVID-19 and appears to contribute to hyperinflammation and disease severity.


Subject(s)
Basigin/blood , COVID-19 , Matrix Metalloproteinase 2 , Humans , Matrix Metalloproteinase 3 , Matrix Metalloproteinase 9 , Severity of Illness Index
16.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
17.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1662689

ABSTRACT

Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%->50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control-case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.


Subject(s)
Breast Neoplasms/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Disease Progression , Female , Humans , Immunohistochemistry/methods , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Middle Aged , Retrospective Studies , Spain , Tissue Inhibitor of Metalloproteinases/metabolism
18.
Sci Rep ; 12(1): 1212, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1649849

ABSTRACT

The molecular basis of the wide clinical heterogeneity of Coronavirus disease 2019 (COVID-19) is still unknown. Matrix metalloproteinases (MMPs) may have a role in the lung damage and regeneration that occur in severe patients. We studied serum MMP3 and MMP9 as potential biomarkers of COVID-19 severity, in 108 hospitalized patients with different World Health Organization (WHO) severity stage and in 48 controls. At hospital admission, serum MMP3 was increased in COVID-19 patients with a significant trend along the progression of the WHO stage, while serum levels of MMP9 were significantly increased in COVID-19 patients with no correlation with disease severity. At 1 week from hospitalization, MMP3 was reduced, suggesting an early pathogenic role of the protein in lung inflammation, while MMP9 levels were further increased, indicating a late role of the protein in the inflammatory process, specifically during the repairing phase. Furthermore, serum MMP9 was positively correlated with serum interleukin-6, myeloperoxidase, and circulating neutrophils and monocytes number. In conclusion, serum MMP3 may help to early predict the severity of COVID-19 and both proteins, MMP3 and MMP9, may contribute to define severe COVID-19 patients that may benefit from a targeted therapy on MMPs.


Subject(s)
COVID-19/blood , Matrix Metalloproteinase 3/blood , Matrix Metalloproteinase 9/blood , Patient Acuity , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged
19.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism , COVID-19 Drug Treatment
20.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1580691

ABSTRACT

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Subject(s)
COVID-19/complications , Heart Failure/metabolism , Heart/virology , Animals , Blood/virology , Blood Physiological Phenomena/immunology , COVID-19/physiopathology , Cardiomegaly/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Physiological Phenomena/immunology , Disease Models, Animal , Endothelium/metabolism , Heart/physiopathology , Heart Failure/virology , Hydroxychloroquine/pharmacology , Male , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Myocardium/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ventricular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL